
Unit 4 : Electromagnetic waves 

1 



TABLE OF CONTENTS  

 
1. Unit 4: The wave equation 

2.  i. Motion of  a string 

 ii. One- dimensional wave equation 

                iii. Problem 

3. Boundary problem 

4. Standing wave 

5. Electromagnetic waves 

6. EM wave in vacuum medium 

7. Future Scope and relevance to industry 

8. NPTEL/other online link 

 

2 



3 

Motion of a string 

Imagine that a stretched string is vibrating. 

The wave equation says that, at any position on 
the string, acceleration in the direction 
perpendicular to the string is proportional to 
the curvature of the string. 

 



x



u

  



displacementu(x,t)

The Wave Equation 
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The one-dimensional wave equation 

Let 
• x = position on the string 
• t = time 
• u(x, t) = displacement of the string at position x and 

time t. 
• T = tension (parameter) 
•   = mass per unit length (parameter) 
Then 
 
 
Equivalently, 
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utt  a2uxx where a  T 
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Solving the one-dimensional WE 
First, we make a wild assumption:  suppose that u is a 

product of a function of x and a function of t: 
 
 
Then the wave equation becomes 
 
 
So, 
 
 
The only way for this equation to  be true for all x and 

for all t is for both sides to be constant;  that is, 
T’’(t)/a2T(t) =  and X”(x)/X(x) = . 



u(x,t) X(x)T (t)



X(x) T (t) a2 X (x)T (t)



T (t)

a2T (t)


X (x)

X(x)
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Separation of variables 

Now 

 

 

means that 

 

 

 

If  < 0,  T(t) and X(x) are both trig functions.*   



T (t)

a2T (t)


X (x)

X(x)
 



T (t)a2T(t) 0, and

X (x)X(x) 0,

*If  = 0, they’re linear, and if  > 0, they’re exponential.  But let’s not 
worry about that now.  (Explanation on next slide.) 
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Clarification: the sign of  

There are three types of solutions to the equation   

 

 

1. if  = 0, then X(x) is linear (ax + b), which won't satisfy 
the boundary conditions;   

2. if  > 0, X(x) is exponential (ket), which also won't 
satisfy the boundary conditions;  and   

3. if  < 0, then X(x) is a sinusoid                               that 
satisfies the boundary conditions.  This is why         

                       in slide 8.               



X (x)X(x) 0



X(x) k sin  x 



  
n2 2

L2
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Boundary conditions 

In a stringed instrument, each end of the string is 
fixed; if the string has length L, then, for all t,  

 

 

 

 

 

Since T(t) ≠ 0 for all t, X(0) = X(L) = 0;  thus, X(x) 
could be a sum of sine terms with zeros at x = 
L: 

 



u(0,t) X(0)T(t) 0, and

u(L,t) X(L)T(t) 0.



X(x) k sin nx /L 

0 L 
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Finding T(t) 

Now we know two things: 
 
 
This means that 
 
 
Now substitute  into the equation for T: 
 
 
 
And find the solution: 



X(x) ksin nx / L 



X (x)X(x) 0



  
n2 2

L2



T (t)a2T (t) 0



T (t) bsin
ant

L
 ccos

ant

L

The minus sign is correct.  The 
original slide was wrong. 
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Putting it all together 

We now have a family of solutions for the wave equation 
(one for every n): 

 
 
Suppose we choose an x0 and look at how the 

displacement varies at this point as t changes. 
 
 
 
 
This is the equation of a sinusoid with frequency =  



u(x,t) X(x)T (t) sin
nx

L
bsin

ant

L
 ccos

ant

L













u(x0,t) K bsin
ant

L
 ccos

ant

L













an

2L


K  sin
nx0

L











where n = 1, 2, 3… 
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Take it higher 

So there are three ways to increase the 
frequency of a sound, producing a “higher” 
note: 

  



frequency
an

2L

Increase a 
(continuous changes) 
Tuning 

Increase n 
(discrete changes) 
Overblowing 
Playing harmonics 

Decrease L 
(continuous changes) 
Shortening 
Fretting 
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Boundary conditions 
With wind instruments, it’s not always true that if L is 

the length of the tube, u(0, t) = u(L, t) = 0.   
This is true with the flute (because the pressure 

doesn’t change at the ends).   
However, what happens with some instruments (like 

the sax) is that ux(0, t) = ux(L, t) = 0, which means 
that the X(x) functions are cosine terms rather than 
sines. 

Still more bizarre is the behavior of the clarinet.  It has 
boundary conditions 

 
 
Go back and substitute in these boundary conditions 

to see what happens! 



u(0,t) 0

ux (L,t) 0
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Standing waves 

The harmonics we hear on a stringed instrument 
and the overtones on a wind instrument are 
actually produced by standing waves, which are 
solutions of the form 

 
 
Sketch some standing waves (see demo on the 

web). 
How are the standing waves for a clarinet different 

from those for a flute? 



bsin
nx

L
cos

ant

L

http://www.kettering.edu/~drussell/Demos/string/Fixed.html
http://www.kettering.edu/~drussell/Demos/string/Fixed.html
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Exercises 

1. Verify that the sum of any two solutions to the wave 
equation is also a solution. 

2. Redo the wave equation solution using the boundary 
conditions for a flute: ux(0, t) = ux(L, t) = 0 

3. Redo the wave equation solution using the boundary 
conditions for a clarinet: u(0, t) = ux(L, t) = 0. Find the 
frequencies of the solutions, and sketch the standing 
waves that are solutions to this equation. 

4. Use separation of variables to find a family of 
solutions to the heat equation: 
 
with boundary conditions u(0, t) = u(L, t) = 0.   

 



ut (x,t) kuxx(x,t)



Electromagnetic Waves 
• Transverse waves without a medium!  

• (They can travel through empty space) 

 

 



– They travel as vibrations in electrical and 
magnetic fields. 

 

–Have  some magnetic and some electrical 
properties to them. 

 



• When an electric field changes, so does the 
magnetic field.  The changing magnetic field 
causes the electric field to change.  When one 
field vibrates—so does the other. 

• RESULT-An electromagnetic wave. 
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Future Scope and relevance to industry 
 

• https://www.sciencedirect.com/journal/wave-
motion/articles-in-press 

• https://www.sciencedirect.com/science/articl
e/pii/S0022247X02001725 

• https://www.researchgate.net/publication/29
9476836_On_the_Transverse_Vibrations_of_S
trings_and_Beams_on_Semi-Infinite_Domains 
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